23 research outputs found

    Peptide binding proclivities of calcium loaded calbindin-D28k

    Get PDF
    AbstractCalbindin-D28k is known to function as a calcium-buffering protein in the cell. Moreover, recent evidence shows that it also plays a role as a sensor. Using circular dichroism and NMR, we show that calbindin-D28k undergoes significant conformational changes upon binding calcium, whereas only minor changes occur when binding target peptides in its Ca2+-loaded state. NMR experiments also identify residues that undergo chemical shift changes as a result of peptide binding. The subsequent use of computational protein–protein docking protocols produce a model describing the interaction interface between calbindin-D28k and its target peptides

    Solution NMR studies of the plant peptide hormone CEP inform function

    Get PDF
    AbstractThe C-terminally Encoded Peptide (CEP) family of regulatory peptides controls root development in vascular plants. Here, we present the first NMR structures of CEP. We show that root-knot nematode (RKN: Meloidogyne spp.) also encodes CEP, presumably to mimic plant CEP as part of their stereotypic, parasitic interaction with vascular plants. Molecular dynamics simulations of plant- and nematode-encoded CEP displaying known posttranslational modifications (PTM) provided insight into the structural effects of PTM and the conformational plasticity and rigidity of CEP. Potential mechanisms of action are discussed with respect to the structure and sampling of conformational space

    Structural insights into the calcium-dependent interaction between calbindin-D28K and caspase-3

    Get PDF
    AbstractThe regulation of apoptosis involves a complicated cascade requiring numerous protein interactions including the pro-apoptotic executioner protein caspase-3 and the anti-apoptotic calcium-binding protein calbindin-D28K. Using isothermal titration calorimetry, we show that calbindin-D28K binds caspase-3 in a Ca2+-dependent fashion. Molecular docking and conformational sampling studies of the Ca2+-loaded capase-3/calbindin-D28K interaction were performed in order to isolate potentially crucial intermolecular contacts. Residues in the active site loops of caspase-3 and EF-hands 1 and 2 of calbindin-D28K were shown to be critical to the interaction. Based on these studies, a model is proposed to help understand how calbindin-D28K may deactivate caspase-3 upon binding.Structured summary of protein interactionsCalbindin-D28K and Caspase-3 bind by isothermal titration calorimetry (View interaction

    Solution NMR studies of the plant peptide hormone CEP inform function

    No full text
    The C-terminally Encoded Peptide (CEP) family of regulatory peptides controls root development in vascular plants. Here, we present the first NMR structures of CEP. We show that root-knot nematode (RKN: Meloidogyne spp.) also encodes CEP, presumably to miThis work was supported in part by NSF Plant Genome Research Project: IOS 1025840 (D.M.B.), NSF Symbiosis, Defense and Self-Recognition Program: IOS-0840932 (D.M.B.), Australian Research Council’s Grant ARC Grant (DP120101893 to N.I. and M.A.D.) and a USDA NIFA pre-doctoral fellowship award to PMD

    Human Norovirus Aptamer Exhibits High Degree of Target Conformation-Dependent Binding Similar to That of Receptors and Discriminates Particle Functionality

    No full text
    ABSTRACT Although two in vitro cultivation methods have been reported, discrimination of infectious human norovirus particles for study of viral inactivation is still a challenge, as both rely on reverse transcriptase quantitative PCR. Histo-blood group antigen (HBGA) binding assays serve as a proxy for estimation of infectious particles; however, they are costly and difficult to purify/modify. Some evidence suggests that certain nucleic acid aptamers only bind intact target proteins, thus displaying a high degree of conformation-dependent binding. The objective of this proof-of-concept study was to characterize the degree of conformation-dependent binding a human norovirus aptamer, M6-2, displayed with the capsid of the norovirus GII.4 Sydney (SYV) strain as a model. SYV capsids were exposed to heat, and aptamer, receptor (HBGA), and antibody binding was assessed. M6-2 and the receptor displayed similarly little target sequence-dependent binding (2.0% ± 1.3% and 0.5% ± 1.2% signal, respectively) compared to that of NS14 (26.4% ± 3.9%). The decay rates calculated with M6-2 and the receptor were also not statistically significantly different (P > 0.05), and dynamic light scattering and electron microscopy confirmed these observations. Ligand docking simulations revealed multiple distinct contacts of M6-2 in the N-terminal P1 and P2 domains of the viral capsid, with some residues close to receptor binding residues. These data suggest that single-stranded DNA aptamers like M6-2 display a high degree of target conformation-dependent binding. It is the first time nucleic acid aptamers have had this characteristic utilized and investigated to discern the infectivity status of viral particles, and the data suggest that other aptamers may show promise as valuable ligands in the study of other fastidious microorganisms. IMPORTANCE Human noroviruses impose a considerable health burden globally. However, study of their inactivation is still challenging with currently reported cell culture models, as discrimination of infectious viral particles is still difficult. Traditionally, the ability of particles to bind putative carbohydrate receptors is conducted as a proxy for infectivity, but these receptors are inconsistent, expensive, and hard to purify/modify. We report a hitherto unexplored property of a different type of ligand, a nucleic acid aptamer, to mimic receptor binding behavior and assess capsid functionality for a selected strain of norovirus. These emerging ligands are cheaper, more stable, and easily synthesized/modified. The previously unutilized characteristic reported here demonstrates the fundamental potential of aptamers to serve as valuable, accessible tools for any microorganism that is difficult to cultivate/study. Therefore, this novel concept suggests a new use for aptamers that is of great value to the microbiological community—specifically that involving fastidious microbes

    Calcineurin Inhibitor CN585 Exhibits Off-Target Effects in the Human Fungal Pathogen Aspergillus fumigatus

    No full text
    Calcineurin (CN) is an attractive antifungal target as it is critical for growth, stress response, drug resistance, and virulence in fungal pathogens. The immunosuppressive drugs, tacrolimus (FK506) and cyclosporin A (CsA), are fungistatic and specifically inhibit CN through binding to their respective immunophilins, FK506-binding protein (FKBP12), and cyclophilin (CypA). We are focused on CN structure-based approaches for the development of non-immunosuppressive FK506 analogs as antifungal therapeutics. Here, we examined the effect of the novel CN inhibitor, CN585, on the growth of the human pathogen Aspergillus fumigatus, the most common cause of invasive aspergillosis. Unexpectedly, in contrast to FK506, CN585 exhibited off-target effect on A. fumigatus wild-type and the azole- and echinocandin-resistant strains. Unlike with FK506 and CsA, the A. fumigatus CN, FKBP12, CypA mutants (ΔcnaA, Δfkbp12, ΔcypA) and various FK506-resistant mutants were all sensitive to CN585. Furthermore, in contrast to FK506 the cytosolic to nuclear translocation of the CN-dependent transcription factor (CrzA-GFP) was not inhibited by CN585. Molecular docking of CN585 onto human and A. fumigatus CN complexes revealed differential potential binding sites between human CN versus A. fumigatus CN. Our results indicate CN585 may be a non-specific inhibitor of CN with a yet undefined antifungal mechanism of activity

    Abh and AbrB Control of Bacillus subtilis Antimicrobial Gene Expressionâ–¿

    No full text
    The Bacillus subtilis abh gene encodes a protein whose N-terminal domain has 74% identity to the DNA-binding domain of the global regulatory protein AbrB. Strains with a mutation in abh showed alterations in the production of antimicrobial compounds directed against some other Bacillus species and gram-positive microbes. Relative to its wild-type parental strain, the abh mutant was found deficient, enhanced, or unaffected for the production of antimicrobial activity. Using lacZ fusions, we examined the effects of abh upon the expression of 10 promoters known to be regulated by AbrB, including five that transcribe well-characterized antimicrobial functions (SdpC, SkfA, TasA, sublancin, and subtilosin). For an otherwise wild-type background, the results show that Abh plays a negative regulatory role in the expression of four of the promoters, a positive role for the expression of three, and no apparent regulatory role in the expression of the other three promoters. Binding of AbrB and Abh to the promoter regions was examined using DNase I footprinting, and the results revealed significant differences. The transcription of abh is not autoregulated, but it is subject to a degree of AbrB-afforded negative regulation. The results indicate that Abh is part of the complex interconnected regulatory system that controls gene expression during the transition from active growth to stationary phase

    NMR-based Structural Analysis of Threonylcarbamoyl-AMP Synthase and Its Substrate Interactions

    Get PDF
    The hypermodified nucleoside N(6)-threonylcarbamoyladenosine (t(6)A37) is present in many distinct tRNA species and has been found in organisms in all domains of life. This post-transcriptional modification enhances translation fidelity by stabilizing the anticodon/codon interaction in the ribosomal decoding site. The biosynthetic pathway of t(6)A37 is complex and not well understood. In bacteria, the following four proteins have been discovered to be both required and sufficient for t(6)A37 modification: TsaC, TsaD, TsaB, and TsaE. Of these, TsaC and TsaD are members of universally conserved protein families. Although TsaC has been shown to catalyze the formation of L-threonylcarbamoyl-AMP, a key intermediate in the biosynthesis of t(6)A37, the details of the enzymatic mechanism remain unsolved. Therefore, the solution structure of Escherichia coli TsaC was characterized by NMR to further study the interactions with ATP and L-threonine, both substrates of TsaC in the biosynthesis of L-threonylcarbamoyl-AMP. Several conserved amino acids were identified that create a hydrophobic binding pocket for the adenine of ATP. Additionally, two residues were found to interact with L-threonine. Both binding sites are located in a deep cavity at the center of the protein. Models derived from the NMR data and molecular modeling reveal several sites with considerable conformational flexibility in TsaC that may be important for L-threonine recognition, ATP activation, and/or protein/protein interactions. These observations further the understanding of the enzymatic reaction catalyzed by TsaC, a threonylcarbamoyl-AMP synthase, and provide structure-based insight into the mechanism of t(6)A37 biosynthesis
    corecore